
AudioFAQ

Jarkko Vatjus-Anttila <quaid@kempele.fi>

AudioFAQ ii

COLLABORATORS

TITLE :

AudioFAQ

ACTION NAME DATE SIGNATURE

WRITTEN BY Jarkko Vatjus-Anttila
<quaid@kempele.fi>

August 23, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AudioFAQ iii

Contents

1 AudioFAQ 1

1.1 Audio FAQ -- A guide to sound effects . 1

1.2 Disclaimer . 2

1.3 Introduction . 3

1.4 Author information . 4

1.5 Backwards . 4

1.6 Blur . 4

1.7 Boost . 5

1.8 Echo . 6

1.9 Filter . 7

1.10 Flip . 7

1.11 Maximize . 7

1.12 Minimize . 8

1.13 Mix . 8

1.14 Modulate . 8

1.15 Shadow . 9

1.16 Shift up . 9

1.17 Shift down . 10

1.18 Volume slide . 10

1.19 Downsample . 10

1.20 Upsample . 11

1.21 Box wave . 11

1.22 Saw wave . 11

1.23 Sine wave . 12

1.24 Triangular wave . 12

1.25 White noise . 13

1.26 How to draw a sample . 13

1.27 SinED v1.0 . 14

1.28 Audio pictures: . 16

1.29 Linear interpolation . 16

AudioFAQ 1 / 17

Chapter 1

AudioFAQ

1.1 Audio FAQ -- A guide to sound effects

Audio.FAQ -- A guide to sound effects (v1.0)
--

- (c) 1996-7 by Jarkko Vatjus-Anttila

1. Information
1.1

Disclaimer
Read this before anything!

1.2
Introduction
And this too.

1.3
Author
Author information.

2. Effects (in alphabetical order):
2.01

Backwards
2.09

Minimize
2.02

Blur
2.10

Mix
2.03

Boost
2.11

Modulate
2.04

Downsample
2.12

Shadow
2.05

Echo
2.13

Shift up
2.06

Filter

AudioFAQ 2 / 17

2.14
Shift down
2.07

Flip
2.15

Upsample
2.08

Maximize
2.16

Volume slide
3. Waves

3.1
Box
3.4

Triangular
3.2

Saw
3.5

White noise
3.3

Sine
4. Miscellaneous

4.1
Drawing
How to draw samples.

4.2
SinED v1.0
Introduction to SinED v1.0.

4.3
Pictures
Some audio related pictures.

4.4
Interpolation
How to interpolate.

1.2 Disclaimer

I cannot take any responsibility about misspellings or other ←↩
flaws

that may cause trouble if you rely on the information described in
this FAQ file. I’ve spend hours and hours doing a sound effect
generator so all of the ideas in this guide are tested in real-life
and notifed to be working as they should be.

I cannot either say that this information about the sound effects is
absolutely correct. This is because I’ve not found any info myself and
I have had to improvise. So, you could say that in this FAQ file I’ve
gathered my own ideas and sollutions for problems in the field of
sound engineering.

There might be easier sollutions for the effect calculations described
below, but again that’s not fault. Don’t read this FAQ like a bible,
but still use it as your information resource.

AudioFAQ 3 / 17

If you have audio related problems, I’m very willingly to help. Just

contact
me and descibe the problem.

Note that all effects descibed in this FAQ file are used by my program

SinED
. It can be found from aminet from dir mus/edit/SinED.lha.

When reading this file, I’d suggest that you downloaded the editor and
tested the effects with it.

1.3 Introduction

Introduction

Well, this whole thing started a long time ago, when I was in an
urgent need of a capable sample-editor. Unfortunately there was not
a single editor available that would meet all of my needs. I was so
desperate that I even pirated the AudioMaster but only to see that
it was worse than most of the others. At that moment I decided to
write my own editor that would do everything I want. At least this
time I’d get what I want. (Besides my C skills needed a practice :D)

Before that I didn’t know anything about processing the audio data,
I began my research, but how odd: it seemed that nobody knew anything
about the more complex effects. Hell, everyone knows how to flip the
data backwards, but when it comes to for example modulation routines,
I didn’t get any info. That’s why every single routine described in
this guide is based on my thoughts and ideas that have come to my
mind during the programming sessions. I cannot guarantee that these
instructions are the best around, or that they were even correct, but
they give a correct result and that’s enough for me.

That’s how this project started. If you own an Amiga with KS2.04+,
then I highly recommend you to get my sample editor from aminet.
At this moment (16.1.1997) the editor is not uploaded there, but it
will be soon and the name will be:

mus/edit/SinED.lha
v1.0 The best sample editor/generatior so far.

With the program you can explore the routines and listen how they
hear like. If you can’t find the program from the aminet, you can
always request it from

me
. I’d be more than happy to send

it to you.

You’re possibly wondering why I’ve not made myself clear with example
routines for example with C language. This is because the sources of
SinED are already included in it’s package. Download it and take a

AudioFAQ 4 / 17

look at them.

Have fun with this guide. I’d be more that happy to hear from your
thoughts about this file, and if you knew new routines to include in
this guide, then please

Contact me!
Signed: Jarkko Vatjus-Anttila

1.4 Author information

Author info:

If you have any problems with this file or audio problems that you
need help with, then don’t hesitate to contact me.

SMail: Jarkko Vatjus-Anttila EMail: quaid@kempele.fi
Linnukkatie 2
90450 Kempele
Finland

WWW: http://www.kempele.fi/~quaid/

Note: My EMail account will expire on the 1st of June 1997. Before
that you can contact me, but after it, it might be more
difficult. My new accound will open on the 1st of September
1997 but the exact address is still unknown. However, if you
really need to contact me after June, then drop a note in some
of the comp.sys.amiga.* newsgroups. I’ll most probably notice
it there.

1.5 Backwards

Backwards

I think this one needs no other introduction that the name. The
sample data is simply flipped backwards. The last value is
switched with the first one, the second last is switched with the
second, and so on until every sample value is switched with its
corresponding value.

1.6 Blur

Blur

The blur effect mixes every sample value about 1%-15% from the
sample’s amplitude. If you are processing 16bit sample data, the

AudioFAQ 5 / 17

length of the amblitude would be 65536 and the maximum blur value
0.15 * 65535 = 9800. Now, create a random number between 0 and
9800 and then randomly add or substract it from the current sample
value. Loop this procedure until you have affected all the sample
values, and by result you have a blurred sample. This gives a foggy
feeling to the waveform.

1.7 Boost

Boost

Boosting means that the sample peaks are increased and sharpened. One
of the methods to create an effect like this, is to use a linear
interpolation. That method applies to boost effect more that better
because we actually are calculating first degree polynomes. One thing
that remains, no matter how you boost is that the first and the last
value in the sample are not affected in anyway.

Create a
interpolation
line from the second sample value to the

fourth one. That’s right, skip the third one. Then calculate the
value for the third samplevalue with the interoplation line. This
would now be the value that the third sample value would have if
the three values were in a row. However, it’s highly unlikely that
the tree values were in a row, so now you have to calculate the
distance of the third value from the interpolation line. This can
be easily done by subtracting the interpolated value from the real
value.

Now we have the distance stored somewhere for later calculation.
Because we had to increase the sample peaks in the boost operation,
we need to increase the distance for the third value from the
interpolation line. In this way the peak rises and sharpens. By this
point you can add a boost-factor in the game. Use the factor to add
a multiply of the distance to the third sample value. For example if
the factor was 2 (which is very high) the new value for the third
sample value would be:

3rd samplevalue = 3rd samplevalue + factor*distance

Usually the factor is a fraction.

You have to take special care when boosting the sample, that the
sample values may never increase or decrease so much that they would
change their sign. For example if the 16bit signed sample had a
value of 15000 before the boost operation, then the maximum positive
boost would be 32767-15000 = 17767 and the maximum negative boost
value would be -32768-15000 = -47768. Graphically thinking this
means that the sample peaks in the picture of

sample wave
may

never raise over 32767 or lower below 32768.

AudioFAQ 6 / 17

After calculating the value for this sample value, go to calculate
the next one. Jump one value forwards and repeat the calculations.
Note that you jump only one, not three values forward. This is
because when calculating this effect, all of the values in the
sample have to be affected during the boost, but from the bunch of
the three values only the middle one is affected. That’s why you
jump only one value forwards, so that the middle value is now the
fifth one. Loop to the end of the sample.

Note too that you need two buffers for this operation. This is
because if you calculated values from one buffer to the same, over
writing the values, only the first calculation would be accurate,
the rest would be something else. This is because the previous
calculation would always affect the next one. This may no happen, so
two buffers are required.

Figure 1: White noise
Figure 3: Boosted white noise

1.8 Echo

Echo

Echo sounds cool, but is nothing more than
mixing
waveforms

togeter. With echo you need 3 values: delay, decay and repeat.
Delay is the time period how long is the difference between echos.
You may decide yourself if this value was seconds of sample values
or something else. Decay is a value that affects the echo volume.
Usually this is percentages. For example if the value was 80% it
would mean that every time the echo is repeated, the volume would be
only 80% from the previous echo volume. Repeat tells only how many
times the echo is repeated.

Example: Delay = 300 samplevalues, decay = 80, repeat = 5

Delay value is this time samplevalues, and it means that first echo
is repeated when the sample has been played for 300 values, the
second echo would happen after 600 sample values and so on. Take the
original waveform to another buffer and decrease it’s volume to 80%
from the original. Then mix it to the original waveform starting
from the samplevalue 300. For the second echo dercease the volume
from the previous echo again to 80% and

mix
in to the original

sample from the sample value 600. Repeat these mixing procedures as
many times the repeat count says and you most probably have a fine
echo. ;)

AudioFAQ 7 / 17

1.9 Filter

Filter

Filter is just the opposise to
boost

. Calculate the values with

interpolation
line, but instead raising and sharpening the sample

peak, lower and smooth it. This makes the sample to go smoother.

I think I don’t need to explain this further. Take a look at the

boost
operation.

Figure 1: White noise
Figure 2: Filtered white noise

1.10 Flip

Flip

Flipping is flipping the samplewave upsize down. :) If you are
processing 16bit sampledata, topmost value in the sample window is
32767. Every sample value (unsigned 0 -> 65535) must be thrown to
other side of this value. This can easily done for example with
this algorithm:

newsamplevalue = 65535 - samplevalue

or for 8bit sample data:

newsamplevalue = 255 - samplevalue

1.11 Maximize

Maximize

In maximize routine the main purpose is to raise the volume of the
waveform without trashing the sample. This is done by calculating
the smallest value that every samplevalue can be multiplied with,
without the sample value changes it’s sign. If the origial value
was positive, then find the value that multiplied with the original
value gives a result 32767. If the sample value was negative, then
Find a value that multiplied with the original value gives a result
-32768. Loop the whole sample and take the *smallest* number to

AudioFAQ 8 / 17

memory. If this value is 1 then the sample is already at its maximum
but if the value is something else (usually a floating point value
between 1 and 2) then multiply every value in the sample with this
value. Resulting you have a maximized sample.

1.12 Minimize

Minimize

Minimize is the oppoiste to maximize . This time the main idea is
to lower the volume without losing any of the sample peaks. This can
be done by doing following calculations: If the original samplevalue
is positive or zero, then calculate a number that would have to be
substracted to get a zero. If the sample value was negative, then
calculate the value that would have to added to get a zero. Take
the smallest number in memory and then loop the whole sample with
adding the value to negative samplevalues and substracting the
value from the positive sample values. Resulting you have a waveform
with minimiun possible volume.

1.13 Mix

Mix

Mixing is copying two samples together. Let’s assume that you have
two signed waveforms (they have to be signed!) You might have heard
about the interference between two waves. This works exactly the
same. Add the samplevalues togeter and divide the result with 2 to
get the sample approximately to the same level than the two sample
before mixing. This is not enough though. The volume goes too low,
so you have to add a factor to both samples to the mixing
procedure. If the volume is wanted to get to the same level than
the previous waveforms, the factor should be about sqrt(3). With
this information the mixing routine get this form:

newsamplevalue = (1st_samplevalue*1.7 + 2nd_samplevalue*1.7) / 2

Basically thinking the mixing is to calculate the average for two
or more samples.

1.14 Modulate

Modulate

Modulation is one of the more exotic routines and you can get really
weird sounds with this one. The idea is first to create a base
waveform. Usually this is a sine or similar. The length of the base

AudioFAQ 9 / 17

wave is almost obsolete, and I use a wave with length about 2048
bytes. After creating the base wave, get the skip value from
somewhere. This value tells you how many samplevalues you have to
skip in the base sampledata when you proceed to the next sample value
in the original sampledata. Of course, when you reach the end of
the base sampledata, loop back to start. Everyone from the original
sample values have to be processed.

The modulation is done by multiplying the current samplevalue with
the current base sample value and then dividing with the half of the
sample amplitude. That depends on the sample accuracy you are using.
If you use 8bit data, then this value would be 128 but for 16bit data
this value is 32767.

The algorithm used to modulate is:

newsamplevalue = base_samplevalue * samplevalue / 32767

The datas have to be signed in this case too, and the accuracy of the
samples has to be the same.

1.15 Shadow

Shadow

I’m not quite sure if this one is obsolete or not. Well, the idea
is to reset every other sample value to zero. The sound changes to
hear like insects in some cases. Perhaps this one is my weird
imagination. :D

1.16 Shift up

Shift up

Shift up and Shift down exists because of some dumb samplers that
sample the data in a way that the result is no longer steadily
around the base level. With these effects you can adjust the sample
to the right position. This does not affect the sound at all, if
sample peaks are not lost.

Shift up and
Shift down
can be linked togeter to a routine

that would automagically calculate the best location for the sample
waveform. If this kind of effects exists in the program it’s usually
called "Normalize" or "Normal DC"

AudioFAQ 10 / 17

1.17 Shift down

Shift down

Exactly the same as the Shift up but this one shifts the data
downwards.

1.18 Volume slide

Volume slide

Volume slide is for changing the sample volume smoothly from some
point to another. This can be done for example by asking the user
for percentages that the sample volume should be in the beginning
from the original sample and in the end. Then create a factor that
is changed all the time sliding forward on the sample. For example
to slide a volume from 200% to 50% the factor would get values from
2 to 0.5. Just calculate the correct factor value for each and
every sample value and multiply every value in the sample with it.

Always remember that if the factor is greater than one, the sample
can be clipped and distorted.

Figure 4: An example of a small
talk sample that has been volume slided from 300% to 0%. You can see
the distorsion in the beginning and the fading in the end.

1.19 Downsample

DownSample

Downsample means that the sample is changed in a way that it sounds
lower although it is played with th e same frequency. As you might
imagine this is done enlarging the sample buffer. If you have a
sample that you would like to hear twice as low without lowering the
playing frequency, you would double the sample buffer and copy the
sample values from the source sample into every other spot in the
target buffer. Then fill the empty spots in the target buffer for
example with interpolation lines. Just calculate one for every single
space the target buffer contains and fill them. In this way the
sample is longer and that’s why it sounds lower although you play it
with the normal frequency.

If you don’t want to halve the sound frequency, you can always
allocate for example a buffer that is one third bigger that the
source one, and then

interpolate
every third value. This would

enlarge the buffer size one third larger and then the frequency would

AudioFAQ 11 / 17

drop one third. Simple as that.

1.20 Upsample

Upsample

Upsample works just like
downsample

, except that this time the
buffer size is reduced instead of enlarging. This is more risky than
downsampling because when the buffer size is reduced, some of the
sample information must be thrown away. Too much upsampling and the
sample is distorted.

Halve the buffer size, and the sample hears like twice as high.
Reduce one thirds and the frequency raises one thirds, etc.

1.21 Box wave

Box

This one is simple. Just fill the half of the buffer with the value
that is maximum positive value for your current sample accuracy. For
8bit samples this would be 127 and for 16bit samples 32767. Then
fill the latter half from the buffer with the minimum value. For
8bit samples this would be -128 and for 16bit samples -32768.

Figure 6: Example of a box-wave.

1.22 Saw wave

Saw

This one is as easy as the
box
wave if you consider the sample

buffer to be unsigned. The scale would then be for 8bit samples
from 0 to 255 and for 16bit sample from 0 to 65535. Then just create
an

interpolation
line of which starting point is (0,0) and ending

point is (sampleend,65535). Sampleend is the sample length in sample
values. After creating the interpolation line just calculate with it
the values for every space in the sample buffer.

AudioFAQ 12 / 17

Figure 7: Example of a saw-wave.

1.23 Sine wave

Sine

The period of the sine is 2*PI. Divide this value with the length of
your buffer in sample values. This gives you the delta angle that you
must jump forwards when calculating the wave. Begin from 0 and end to
2*PI.

Sample code:

deltavalue = 2*PI/samplelength;
for (loop=0; loop<2*PI; loop++

buffer[loop] = sin(loop*deltavalue);

Figure 8: Example of a sine-wave.

1.24 Triangular wave

Triangular

Triangular wave is similar to saw, but this time the interpolation
is divided into 3 sections. You have to calculate three lines, with
following coordinates:

Start End
----- ---

Line 1: (0,0) (samplelength/4,32767)
Line 2: (samplelength/4,32767) (3*samplelength/4,-32768)
Line 3: (3*samplelength/4,-32768) (0,0)

Then fill the first part with the first
interpolation
line, the

second part with the second line and the third part with the third
line. As you can see, the first line raises from the base position
to the maximum, the second lowers from the maximum to the minimum
and the third one raises from the minimum to the base position. When
these three lines are connected, there appears a triangular wave.

Triangular wave is similar to
sine
wave.

Figure 9: Example of a triangular-wave.

AudioFAQ 13 / 17

1.25 White noise

White noise

White noise is just random numbers with the complete scale of your
current sample accuracy. Just write a decent randomnumber generator
and you’ll create a white noise just fine.

Figure 1: White noise

1.26 How to draw a sample

How to draw a sample

Pictures
Some waveform pictures here!

This can be done easily if the sampledata is in signed form.
Imagine a box of this kind:

32767 +---+
| |
| |
| |
| |
| |

0 X***|
| |
| |
| |
| |
| |
-32768 +---+

Where the *** line is the midline. Each horizonal line in that box
represent its own sample value and the *** line is the zero.
Consider the box as coordinate axles where the *** line is x-axle,
the leftmost vertical line is the y-axle and the X is the origin.
The length of the x-axle is the same as the length of the sample
and the length of the Y axle is the same as the aplitude of the
sample. For 8bit samples this would be 256 (-127 -> 128) and for
16bit samples 65536 (-32767 -> 32678). Of course these kinds of
sample boxes cannot be drawn, so the you have to scale one to fit
on your screen or window.

Ok, the drawing then is simple. Just take the value from the sample
and move your pen to that spot on the sample box. If the first
value is (8bit sample) 69 then the coordinates are (0,69). If you
imagined the sample box to be the conjunction of the coordinate
axles the only think you need to do, is to scale the coordinatepair
(0,69) to your screen coordinates. Chech all of the sample values

AudioFAQ 14 / 17

and connect the plots on the screen with lines, and there you have
a sample wave drawn on your screen.

Figure 5: Simple samplewave example.

Drawing speedups:

- Calculate first how may sample values you have to skip before

drawing. I mean that if you have a screen width 640 pixels and
the sample length is 102400 bytes. In this case only every 160th
value would have to checked and displayed in the screen. In this
way you only need to check 640 values in total from the sample
instead of the 102400. The speedup is remarkable.

- You can use just pixels for drawing, too. Lines are not slow
when displaying a sample, but pixels are always faster.

Special notes:

- Let’s assume that the screen width is 640 pixels. If you are

drawing a sample which length is smaller than 640, you have to
skip pixels on the screen instead the vaules in the sample, to
fit the sample in the 640 pixels. This time you cannot connect
the values with lines because it wouldn’t be drawn right then.
If the two values were just connected with a line, it would tell
the user that the sample actually wasn’t so short and it
contained values between those connected samplevalues, even it
didn’t contain them. The idea is that when sample value occurs,
it lasts until the next value comes up. That’s why you have to
draw a horizonal line until the next samplevalue and then
connect the end of the horizonal line to the next sample value
with a vertical line, this makes the samplewave to like a
stairs in most cases, but at least it’s the truth.

1.27 SinED v1.0

SinED v1.0

This is the .readme file of the SinED v1.0

Description: V1.0 The most powerful sample editor/generator ever made!
Author: Jarkko Vatjus-Anttila <quaid@kempele.fi>
Uploader: Jarkko Vatjus-Anttila <quaid@kempele.fi>
Version: 1.0
Dir: mus/edit

Welcome to SinED v1.0, the most powerful sample editor/generator so far. :)

(c) 1996-7 Jarkko Vatjus-Anttila <quaid@kempele.fi>

AudioFAQ 15 / 17

This program is without a doubt the most powerful sample editor
generator so far. The reason this is written, is because I needed a
decent sample edtior, but the ones available were more or less
pathetic. It doesn’t have to be that the only good sample editors are
available only for those who have a DSP installed in thier machines.
SinED will fix that problem.

Just take a look at the list about the features that SinED provides
to you. You will not believe your eyes.

Hype? Perhaps, but still take a look. :)

Advantages:

* It’s free.

* All calculations are made in 16 bit accuracy. This ensures that
all calculated effects and operated samples have the best possible
quality. 8bit samples are just an option.

* Currently SinED is capable to create Sines, box, triangular and
saw -waves, not forgetting the white noise (and clear :).

* This version includes following effects: Backwards, Flip, Shift up,
Shift down, Shadow, Blur, Boost, Filter, Maximize, Minimize, Mix,
Modulate, Tunnel echo, Repeat echo, Convert and Translate.

* Some effects are combined in a way that you can create cool sound
sweeps. For example you can combine the filter and the boost options
to create for example an opening filter. I remind that all effects
are smooth due the 16bit accuracy.

* Samples can have unlimited length. Only your amount of memory will
slow down you work. It works with virtual memory too, although only
VMM is tested.

* Samples can be displayed in four different drawing styles. Lines,
Pixels, solid and inverse.

* Most common sample format are now supported, like IFF-8SVX,
IFF-16SV, WAV and AIFF. SinED includes routines for saving and
loading mono and stereo modes. Not surround.

* Includes two stereo channels. Effects can be calculated for both
channels or just for other. Channel lengths are independent, so
both channels can contain for example their own sample.

* Multilevel undo option. Only your memory limits the actions.

* Of course the samples can be played, with user definable settings.

* Samples can be edited by hands.

* It’s far more better than for example AudioMaster, the most pathetic
sample-editor ever made. Take a look at this one!!!!

AudioFAQ 16 / 17

Download this now! It’s worth it.

1.28 Audio pictures:

Audio pictures:

Here are all of the pictures gathered from this guide onto this one
page. All pictures are created with

SinED v1.0
and grabbed

with QuickGrab.

Figure 1: White noise
Figure 2:

Filtered
white noise

Figure 3:
Boosted
white noise

Figure 4: An example of a small talk sample that has been

volume slided
from 300% to 0%. You can see the

distorsion in the beginning.
Figure 5: Simple samplewave example.
Figure 6: Example of a box-wave.
Figure 7: Example of a saw-wave.
Figure 8: Example of a sine-wave.
Figure 9: Example of a triangular-wave.

1.29 Linear interpolation

Linear interpolation

In this guide I refer a lot to a simple mathematical solving method
called linear interpolation. Let’s see how it works.

The main idea is to calculate a formula for a line that would match
most of the values we are currently processing. In most cases the
more complex formula changes to a first degree approximation formula
that can easily be used to assist in work. And more importantly, it’s
far more faster than calculating with the original values. Take a
special care noting that this really is just an approximation. You
will not get accurate results.

As you might imagine, to create a first degree formula, you need to
know the start and the end coordinate pairs in order to calculate

AudioFAQ 17 / 17

the slope and to generate the formula.

Let’s assume that the start point is (x0,y0) and the end point is
(x1,y1). Then the slope would be:

y1 - y0
k = ---------

x1 - x0

The first degree formula can be written like this, where the plain Y
and X are variables:

Y - y0 = k*(X - x0)

Adding the slope to the function and moving the y0 to right side we
get:

y1 - y0 y1 - y0
Y = ---------*X - ---------*x0 + y0

x1 - x0 x1 - x0

Everyone can optimize that to suit oneself’s needs.

Now when passing values for X, which usually means the sample buffer
spaces, you can calculate the value for Y which now represents the
sample value. This is the function that can be user for many simple
operations.

	AudioFAQ
	Audio FAQ -- A guide to sound effects
	Disclaimer
	Introduction
	Author information
	Backwards
	Blur
	Boost
	Echo
	Filter
	Flip
	Maximize
	Minimize
	Mix
	Modulate
	Shadow
	Shift up
	Shift down
	Volume slide
	Downsample
	Upsample
	Box wave
	Saw wave
	Sine wave
	Triangular wave
	White noise
	How to draw a sample
	SinED v1.0
	Audio pictures:
	Linear interpolation

